Molecular level stochastic model for competence cycles in Bacillus subtilis.

نویسندگان

  • Daniel Schultz
  • Eshel Ben Jacob
  • José N Onuchic
  • Peter G Wolynes
چکیده

The role of stochasticity and noise in controlling genetic circuits is investigated in the context of transitions into and from competence in Bacillus subtilis. Recent experiments have demonstrated that bistability is not necessary for this function, but that the existence of one stable fixed point (vegetation) and an excitable unstable one (competence) is sufficient. Stochasticity therefore plays a crucial role in this excitation. Noise can be generated by discrete events such as RNA and protein synthesis and their degradation. We consider an alternative noise source connected with the protein binding/unbinding to the DNA. A theoretical model that includes this "nonadiabatic" mechanism appears to produce a better agreement with experiments than models where only the adiabatic limit is considered, suggesting that this nonconventional stochasticity source may be important for biological functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MOLECULAR CLONING AND EVALUATION OF WILD PROMOTER IN EXPRESSION OF BACILLUS SPHAERICUS PHENYLALANINE DEHYDROGENASE GENE IN BACILLUS SUBTILIS CELLS

To evaluate the role of wild promoter of L-phenylalanine dehydrogenase (PheDH) gene, referred to as pdh, from Bacillus sphaericus in expression, cloning of pdh gene in Bacillus subtilis was performed. The whole pdh gene was cloned in pHY300PLK shuttle vector and amplified, construct (pHYDH) then transformed in B. subtilis ISW1214 and E. coli JM109. The pdh endogenous promoter presented no effec...

متن کامل

Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach

Competence is a transiently differentiated state that certain bacterial cells reach when faced with a stressful environment. Entrance into competence can be attributed to the excitability of the dynamics governing the genetic circuit that regulates this cellular behavior. Like many biological behaviors, entrance into competence is a stochastic event. In this case cellular noise is responsible f...

متن کامل

Subtle interplay of stochasticity and deterministic dynamics pervades an evolutionary plausible genetic circuit for Bacillus subtilis competence.

Here we study the interplay of stochastic and deterministic dynamics in an evolutionary plausible candidate core genetic circuit for Bacillus subtilis competence. We find that high noise would not necessarily be detrimental to the circuit's ability to deliver the phenotype, due to an unexpected built-in robustness that we further investigate. Also, we find that seemingly subtle deterministic dy...

متن کامل

Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis

In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the c...

متن کامل

Noise Expands the Response Range of the Bacillus subtilis Competence Circuit

Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 45  شماره 

صفحات  -

تاریخ انتشار 2007